
Using the Attunity Connect
Syntax File

Version 4.1

Using the Attunity Connect Syntax File

© 2003 by Attunity Ltd.

Due to a policy of continuous development, Attunity Ltd. reserves the right to alter, without
prior notice, the specifications and descriptions outlined in this document. No part of this
document shall be deemed to be part of any contract or warranty whatsoever.

Attunity Ltd. retains the sole proprietary rights to all information contained in this document.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopy, recording, or otherwise, without
prior written permission of Attunity Ltd. or its duly appointed authorized representatives.

Product names mentioned in this document are for identification purposes only and may be
trademarks or registered trademarks of their respective companies.

3rd party software credits

This product (Attunity Connect) includes software developed by Eclipse.org, Exolab.org, Sun
Microsystems, Inc., the JDOM project (http://www.jdom.org/) and the Apache Software
Foundation (http://www.apache.org/).

Attunity hereby disclaims on behalf of all Eclipse.org contributors whose components are
included in Attunity Connect, all warranties and conditions, express and implied, including
warranties or conditions of title and non-infringement, and implied warranties or conditions
of merchantability. Attunity excludes on behalf of all Eclipse.org contributors whose
components are included in Attunity Connect all liability for damages, including direct,
indirect, special, incidental and consequential damages.

Attunity hereby agrees to defend and indemnify Sun and its licensors from and against any
damages, costs, liabilities, settlement amounts and/or expenses (including attorneys' fees)
incurred in connection with any claim, lawsuit or action by any third party that arises or
results from the use or distribution of any and all Programs and/or Software, as related to
Sun's software components embedded in this software (Attunity Connect).

Castor is Copyright 2000-2002 (C) Intalio Inc. All Rights Reserved.

JDOM is Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

The Apache Software License, Version 1.1 is Copyright (c) 1999-2000 The Apache Software
Foundation. All rights reserved.

Table of Contents
Handling Different Flavors of SQL ... 5
The Syntax File ..6
Defining a Flavor of SQL...9

Specifying Variations in the Syntax File ..10
Variations in SQL Statements ...10
Supported Functionality...11
Variations in SQL Functions..14
Operands Supported by a Function ...15
Date and Time Constants...17
Example Syntax File Definitions ...18

Default SQL Flavors Supplied by Attunity Connect..19

Specifying a Flavor of SQL in an Application Connect String20

iv Using the Attunity Connect Syntax File

Handling Different Flavors of SQL

Attunity Connect processes the SQL submitted by a user based on the
backend database being accessed. In the following circumstances you
can control the way the SQL is processed by Attunity Connect:

! When the features supported by the version of the backend
database are different from the support provided by Attunity
Connect for that database.

! When the backend database is accessed using either the ODBC or
OLESQL Attunity Connect generic drivers. The set of SQL features
sent by default to the backend database is minimal – those that are
normally supported by all relational databases. This is because any
flavor of SQL can be supported by the backend database.

Attunity Connect provides a mechanism to handle these situations,
using a special file (the Attunity Connect SQL syntax file).

The following topics are covered:

The Syntax File – For details, see page 6.

Defining a Flavor of SQL – For details, see page 9. This section includes
the following:

Specifying Variations in the Syntax File – This section includes the
following:

Variations in SQL Statements – For details, see page 10.

Variations in SQL Functions – For details, see page 14.

Supported Functionality – For details, see page 11.

Operands Supported by a Function – For details, see page 15.

Default SQL Flavors Supplied by Attunity Connect – For details, see page
19.

Specifying a Flavor of SQL in an Application Connect String – For details,
see page 20.

6 Using the Attunity Connect Syntax File
The Syntax File
The Attunity Connect SQL syntax file is a text file defining the SQL
flavor specific to relational providers having an SQL syntax other than
those supported by default by Attunity Connect. This file (NAV.SYN or
NAVSYN on Compaq NonStop Guardian and IBM MVS platforms)
resides in the DEF directory under the directory where Attunity
Connect is installed (on Compaq NonStop platforms, in the subvolume
where Attunity Connect is installed, and on IBM MVS as
NAVROOT.DEF.NAVSYN, where NAVROOT is the high level qualifier
where Attunity Connect is installed).

A syntax file resides on every Attunity Connect machine.

The syntax file is divided into sections. Each section defines a different
flavor of SQL or modifies an existing one. The syntax file shipped with
Attunity Connect contains the following predefined flavors:

SQL Flavor Syntax Name in Syntax File

Oracle case-sensitive data Oracle version 8 – ORACLE8_SYNTAX
Oracle version 7 – ORACLE_SYNTAX
With this syntax use quotes (") to
delimit the name for case sensitive
table and columns names. For example:

SELECT * FROM "Employee"
 WHERE
 "Employee-Status" = ‘Married’

You must specify precisely the case
sensitivity of the names.

RdbSQL version 5 RDB5_SYNTAX

OLESQL driver against JOLT OLESQL_JOLT

ODBC driver against SQL/MX
data

SQLMX_SYNTAX

ODBC driver against SYBASE
SQL AnyWhere data

SQLANY5_SYNTAX

ODBC driver against EXCEL
data

excel_syntaxa

a. The syntax defines the single quote in Excel as the ` character instead of the usu-
al ' character.

 Handling Different Flavors of SQL 7
The following flavors of SQL are supported by Attunity Connect
without the need for a syntax file entry. These flavors can be used as a
base for a new flavor in the syntax file and they can be also specified in
the binding file directly as a flavor for a database:

" When you access a database through any of the drivers supplied by Attunity
Connect (such as Informix or Sybase), the SQL flavor of that database is
supported automatically.

SQL Flavor Attunity Connect Syntax
Name

DB2 under OS/390 DB2MF

DB2 under UNIX and NT DB2

Informix INFORMIX

Ingres INGRES

Ingres IIa

a. Use the Ingres driver.

OPENINGRES

Microsoft JET driver-based data (such
as MS Access)b

b. Use either the ODBC or OLESQL driver.

OLESQL_JETc

c. The OLESQL_JET syntax includes support for data with table or column names
that contain spaces.

ODBC-based data ODBC

OLE DB-based data OLESQL

ORACLE version 7 ORACLE

ORACLE version 8 and higher ORACLE8

RdbSQL version 6 RDBSQL

Red Brick Warehouse REDBRICK

SQL Server MSSQL

SQL/MP SQLMP

Sybase SYBASE

8 Using the Attunity Connect Syntax File
The Attunity Connect syntax file enables you to do the following:

! Define a new flavor of SQL.

! Modify a flavor of SQL implemented by Attunity Connect.

Syntax File Format for
a New Flavor of SQL

A syntax file section that specifies a new flavor of SQL has the following
format:

[syntax_name]
BASED_ON = syntax_name_of_base_flavor
variation1
variation2
...

" On an IBM MVS platform, the sections use angled brackets
(<syntax_name>).

TDP_TYPE can be used as a synonym for BASED_ON.

where:

syntax_name – The name of a new flavor. This name must be unique.

syntax_name_of_base_flavor – The name of an existing flavor that serves
as the basis of your flavor. If your omit this parameter, the new SQL
flavor is based on the Attunity ConnectSQL syntax. The name can be
one of the flavors previously defined in the syntax file (including the
predefined flavors listed in the table shown on page 6) or one of the
flavors supplied by Attunity Connect that do not require a syntax file
entry (listed in the table shown on page 7).

variation – The specific variations in your custom SQL (see "Specifying
Variations in the Syntax File" on page 10).

Syntax File Format for
a Modified Flavor of
SQL

Modifying a flavor of SQL supported by Attunity Connect will change
the SQL of all databases using this flavor. The syntax file section has
the following format:

[syntax_name]
variation1
variation2
...

" On an IBM MVS platform, the sections use angled brackets
(<syntax_name>).

where:

syntax_name – The name of an existing SQL flavor provided by Attunity
Connect. The name can be one of the flavors previously defined in the

 Handling Different Flavors of SQL 9
syntax file (including the predefined flavors listed in the table shown on
page 6) or one of the flavors supplied by Attunity Connect that do not
require a syntax file entry (listed in the table shown on page 7).

" The syntax file must be changed to reflect the modified syntax on every
machine where the flavor is used (including the client machine).

variation – The specific variations in your custom SQL (see "Specifying
Variations in the Syntax File" on page 10).

Ordering Sections in
the Syntax File

The order of the sections in the syntax file is important. For example, if
you have a section modifying an existing flavor (such as ORACLE) and
afterwards a section defining a new flavor (such as MY_ORACLE) based
on ORACLE, changes in the former section affect MY_ORACLE flavor.
However, if the MY_ORACLE section appears first in the syntax file, it
is based on the original flavor for ORACLE supplied by Attunity
Connect.

Errors in the Syntax
File

When you execute a query that uses an SQL flavor defined in the
Attunity Connect SQL syntax file, Attunity Connect checks that the
syntax defined for that data source has been correctly defined. If a
mistake is found, an error is issued and that syntax section in the
syntax file is ignored by Attunity Connect.

Defining a Flavor of SQL
To specify a flavor of SQL to be used by Attunity Connect for a specific
database, you must define the flavor in the syntax file (or use one of the
predefined flavors) and change the binding file to reference this flavor.
You can make these changes directly to the files or in the application
connect string (see page 20 for details about defining an SQL flavor in
a connect string).

! To define a flavor of SQL to Attunity Connect:

1. If you want a flavor not previously supported by Attunity Connect,
on every machine where you want a specific SQL flavor to be used
(including the client machine), specify the SQL flavor in the syntax
file using a text editor, as described in "The Syntax File" on page 6.

When the SQL flavor of your database is the same as one of the
flavors of SQL supported by Attunity Connect (either a flavor
previously defined in the syntax file, including the predefined
flavors listed in the table shown on page 6, or one of the flavors
supplied by Attunity Connect that do not require a syntax file,
listed in the table shown on page 7), continue with the next step.

2. In the Data Access Setup wizard, in the Advanced Database
Properties screen for the relevant data source, specify the Syntax

10 Using the Attunity Connect Syntax File
name. The Syntax name identifies the syntax_name section you
specified in the syntax file.

This generates the syntaxName parameter in the binding file, as
follows:

<datasource name="name" type="type"
 connect="connect_string"
 syntaxName="syntax_name" />
" Only the first 15 characters of the syntaxName are used.

Specifying Variations in the Syntax File
Attunity Connect enables you to specify the following types of
variations of standard SQL flavor:

! Variations in SQL Statements (see page 10).

! Supported Functionality (see page 11).
! Variations in SQL Functions (see page 14).

! Operands Supported by a Function (see page 15).
! Date and Time Constants (see page 17).

Using Single Quotes in
the Syntax File

A single quote is reserved by Attunity Connect to identify parameters.
If you need to specify a single quote (’) as part of an entry in the syntax
file, use two single quotes (").

Variations in SQL Statements

A variation in an SQL statement has the following format:

variation = value

where Attunity Connect enables you to specify the following SQL
variations:

Parameter in Syntax File Max.
Length

Syntax for a column alias. ASFORM 5

The string used to denote a parameter value. You
can incorporate %d into the string that will be
replaced by a sequential counter of parameters (for
example, if your driver supports parameters of the
form:p1,:p2, …, specify ":p%d").

PLACEHOLDERS 5

 Handling Different Flavors of SQL 11
Supported Functionality

You can specify whether the database you want to access supports a
particular SQL functional variation. The following parameters denote
the functional variations Attunity Connect supports. Specifying Y (yes)
for a parameter indicates that this functional variation is supported by
the database; specifying N (no) indicates that the database does not
support the functional variation.

AGG_DIST_NOT_SUPPORT – The database doesn't support DISTINCT in
an aggregate function.

CASE_SENSITIVE – The database is case sensitive. When set to YES,
identifiers are passed to the backend database exactly as they are
specified in the SQL passed to Attunity Connect. When set to NO,
identifiers are converted to upper case before being sent to the backend
database. When set to CASE_SENSITIVE_QUOTE, identifiers are passed
to the backend database as they are written only if they are surrounded
by quotes, otherwise they are converted to upper case.

" For Oracle data, set the value to CASE_SENSITIVE_QUOTE and surround
the case sensitive table and column names in quotes.

EXPR_IN_ORDERBY – The database supports expressions in the ORDER
BY list. An integer constant is treated as an ordinal. This parameter is
ignored if ORDER_NO_CALC is specified.

" If an ORDER BY clause is not specified, ORDER BY num is allowed, where
num can refer to any expression in the list of columns retrieved by the SELECT
statement.

The character used to quote identifier and table
names. If this value is not specified, there is no
quoting of identifier or table names.

IDENTIFIER_QUOTE_CHAR 1

The character used to quote a character string. If this
value is not specified, there is no quoting of character
strings.

STRINGQUOTATION 1

The join connector used between tables in a FROM
clause.

JOINCONNECTOR 20

Starting and ending characters used to group two
tables in a FROM clause, such as an open parenthesis
“(” at the beginning and a close parenthesis “)” at the
end.

JOINSURROUNDCHARS 2

Parameter in Syntax File Max.
Length

12 Using the Attunity Connect Syntax File
Also see: ORDER_BY_COLUMN, ORDER_EXPR_BY_NUM and
ORDER_NO_CALC.

GROUP_ANY_EXPR – Any expression can appear in a GROUP BY clause.

" If GROUP_ANY_EXPR is specified, GROUP_BY_COLUMN and
GROUP_EXPR_BY_NUM are ignored.

GROUP_BY_ALIAS – 'GROUP BY alias' syntax is allowed, where alias is
an alias assigned to a column in the list of columns retrieved by the
SELECT statement.

GROUP_BY_COLUMN – 'GROUP BY column-name' syntax is allowed,
where column-name does not have to appear in the list of columns
retrieved by the SELECT statement.

" GROUP_BY_COLUMN can be specified with GROUP_EXPR_BY_NUM in a
query. If GROUP_ANY_EXPR is specified, GROUP_BY_COLUMN is ignored.

GROUP_EXPR_BY_NUM – 'GROUP BY num' syntax is allowed, where
num can refer to an expression.

" GROUP_EXPR_BY_NUM can be specified with GROUP_BY_COLUMN in a
query. If GROUP_ANY_EXPR is specified, GROUP_EXPR_BY_NUM is
ignored.

GROUP_SHOULD_AGG – At least one aggregate function must appear in
the SELECT statement when using a GROUP BY clause. For example,
“SELECT sal FROM sal GROUP BY sal” is invalid.

NO_COLUMN_ALIAS – Aliases for columns are not supported.

NO_DISTINCT_HAVING – The database doesn't support the DISTINCT
operator in aggregated HAVING clauses.

NO_EXPRESSIONS_IN_INSERT – The database doesn’t support
expressions as part of a VALUES clause in an INSERT statement. For
example, a statement like “INSERT INTO …. VALUES(10+10)” is not
supported.

NO_GRANT – The database doesn’t support user permissions within the
SQL.

NO_MULTI_THREADING – The database cannot handle multithreading of
the same statement or command.

NO_OWNER – The database doesn’t support owner specification within
the SQL.

NO_PARAMETERS_IN_HAVING – The database doesn’t support
parameters in a HAVING clause.

 Handling Different Flavors of SQL 13
NO_PARAMETERS_IN_SUBQUERY – The database doesn’t support
parameters in a subquery.

NO_TWO_PARAMS_IN_COMPARE – Only one side of a comparison can be
a parameter.

Also see: NO_TWO_PARAMS_IN_MATH and
PARAM_AND_EXPR_IS_PARAM.

NO_TWO_PARAMS_IN_MATH – Only one side of a function involving a +,
-, * or / arithmetic operator can be a parameter.

Also see: NO_TWO_PARAMS_IN_COMPARE and
PARAM_AND_EXPR_IS_PARAM.

ONE_COLUMN_SUBQUERY – Subqueries cannot contain more than one
column. An aggregate subquery with more than one column cannot be
passed to the database.

ORDER_BY_COLUMN – 'ORDER BY column-name' syntax is allowed,
where column-name does not have to appear in the list of columns
retrieved by the SELECT statement.

Also see: EXPR_IN_ORDERBY, ORDER_EXPR_BY_NUM and
ORDER_NO_CALC.

ORDER_EXPR_BY_NUM – 'ORDER BY num' syntax is allowed, where
num can refer to an expression.

Also see: EXPR_IN_ORDERBY, ORDER_BY_COLUMN and
ORDER_NO_CALC.

ORDER_NO_CALC – Ordering by a constant field is not supported.

Also see: EXPR_IN_ORDERBY, ORDER_BY_COLUMN and
ORDER_EXPR_BY_NUM.

PARAM_AND_EXPR_IS_PARAM – A function that does not accept
parameters also will not accept an expression that contains a
parameter, even if the expression also contains at least one identifier or
constant.

Also see: NO_TWO_PARAMS_IN_COMPARE and
NO_TWO_PARAMS_IN_MATH.

14 Using the Attunity Connect Syntax File
Variations in SQL Functions

You may need to specify variations of standard SQL functions in the
following cases:

! The database you want to access does not implement certain
functions.

! The database you want to access implements functions using a
name different from that used by Attunity Connect.

! The database you want to access implements functions using an
order of the function operands different from the order used by
Attunity Connect.

A variation in an SQL function has the following format:

function = rule

where:

function – Attunity Connect enables you to specify variations for the
following functions:

For details about these functions see the Attunity Connect Data Adapter
Guide and Reference.

rule – Use the tilde symbol (~) to represent a parameter. If you need to
reference specific operands in an order different from the order in which
they are passed, use '0 for first parameter, '1 for the second parameter,
etc. See the example below.

Specify NOT_SUPP for any function that is not supported by your
database.

! ABS ! LENGTH ! RPAD
! ASCII ! LIKE (with 2 or 3

operands)
! ROUND

! CEIL ! RTRIM
! CASE ! LOG10 ! SIGN

! CASE_CONDA

a. The conditional case function.

! LOWER ! SQRT

! CHR ! LN ! SUBSTR (with 2 or 3
operands)! CONCAT ! LPAD

! CONVERT ! LTRIM ! trig – trig is one of:
SIN, ASIN, SINH
COS, ACOS, COSH
TAN, ATAN, TANH

! EXP ! MOD
! FLOOR ! PI
! IFNULLL ! POSITION

! IN (list of values) ! POWER ! TRUNC

 Handling Different Flavors of SQL 15
In most cases, the function name alone identifies the function itself.
However, in the case of the LIKE and SUBSTR functions, the function
specification can also include the number of the function’s operands. If
either of these functions is not supported with a particular number of
operands, add (2) or (3) to identify which form of the function is not
supported (the form having 2 operands or the form having 3 operands).
For example, the following specifies that the LIKE function with 3
operands is not implemented by the database:

LIKE(3) = NOT_SUPP

" The LIKE function with 2 operands, however, is supported.

Example

The database of this example has the following characteristics:

! It does not implement the LIKE function for three operands.

! It does implement the substring function with three operands, but
calls it SUBSTRING (instead of the default SUBSTR).

! It does not implement the substring function with two operands.
However, it does implement the LENGTH function, and you still
want to pass a substring with two operands.

[MY-SYNTAX]
LIKE(3) = NOT_SUPP
SUBSTR = SUBSTRING(~, ~, ~)
/* three operands (SUBSTRING with three operands */

SUBSTR=SUBSTRING('0,'1, LENGTH('0)-'1+1)
/* two operands (SUBSTRING with two operands */

Operands Supported by a Function

You can specify the way a database handles the operands that are
accepted by a function. By default, a function will accept any type of
operands, however, some databases restrict the type of operands that
can be accepted.

An operand in Attunity Connect is categorized as one of the following:

! Constant
! Expression

! Identifier
! Parameter

16 Using the Attunity Connect Syntax File
You can specify the type of operands that are supported by a function
in one of the following ways:

! Specify the operands that are supported (assuming initially that
none are supported).

The format to specify operands that are supported is:

OPERANDS_function SUPPORT [(oper1,oper2) [(oper1,oper2) [...]]]

Each pair of operands that you specify – (oper1,oper2) – dictates a
pair of operands that are accepted by the function. You must specify
pairs of operands.

! Specify the operands that aren’t supported (assuming initially that
all are supported)

The format to specify operands that are not supported is:

OPERANDS_function NO SUPPORT rule rule1 ... rulen

Where rule is: (1,oper1)|(2,oper2)|(oper1,oper2)

(1,oper1) specifies that the first operand cannot be of type oper1.

(2,oper2) specifies that the second operand cannot be of type oper2.

(oper1,oper2) specifies that if the first operand is of type oper1, the
second operand cannot be of type be oper2 and if the second operand
is of type oper2, the first operand cannot be of type be oper1.

where:

function – The name of the function (such as LIKE). See "Variations in
SQL Functions" on page 14 for the complete list of functions that can be
specified in the syntax file.

oper – The type of operand. The type can be one of the following:

CONST – A constant

EXPR – An expression

ID – An identifier

PARAM – A parameter

When the function that is specified accepts more than two operands, the
specification for the second operand is applied to the all the operands
except for the first operand.

" When the function accepts only one operand, any values specified for a
second operand are ignored.

 Handling Different Flavors of SQL 17
Examples

! The LIKE function does not accept a parameter for its first operand:

OPERANDS_LIKE NO SUPPORT (1,PARAM)

! The MOD function does not accept a parameter for both its operands
(one operand can be a parameter, as long as the other operand is not
a parameter):

OPERANDS_MOD NO SUPPORT (PARAM,PARAM)

! The SUBSTR function accepts only an identifier for its first operand
and either an identifier or parameter for its second command:

OPERANDS_SUBSTR SUPPORT (ID,ID)(ID,PARAM)

! The LIKE function doesn’t accept identifiers or parameters for both
its first and second operands:

OPERANDS_LIKE NO SUPPORT
(1,ID)(1,PARAM)(2,ID)(2,PARAM)

Date and Time Constants

The format of the Attunity Connect date and time constants sent to the
driver can be overridden.

The following is the syntax Attunity Connect supports for date and time
constants:

! The DATE_CONSTANT function is defined using parameters of year
(YYYY), month (MM), and day (DD).

! The TIME_CONSTANT function is defined using parameters of
hours (HH) using a 24 hour clock, minutes (MI) and seconds (SS)

! The TIMESTAMP_CONSTANT function is defined using the
combined parameters of DATE_CONSTANT and TIME_CONSTANT,
where the first set of parameters define the DATE and the second
set of parameters define the TIME.

18 Using the Attunity Connect Syntax File
Example Syntax File Definitions

When your database uses a flavor of SQL similar to one of the flavors of
SQL supported by Attunity Connect or previously defined in the syntax
file, you can use this SQL flavor as the basis for the SQL for your
database.

! To create a new SQL flavor based on an existing flavor:

1. Open the Attunity Connect SQL syntax file in a text editor on the
machine where the data source is located.

2. In the syntax file, specify a new section:

[syntax_name]
BASED_ON = sql_source

where:

syntax_name – A name to identify the SQL flavor (up to a maximum
of 15).

If this name is the same as one of the existing flavors supported by
Attunity Connect, it will replace that flavor. In this case, the syntax
file must be changed on every machine where the flavor is used.

sql_source – The data source type whose SQL is similar to that of
your database.
" You can base a provider’s flavor on the default Attunity Connect SQL

flavor (by not specifying BASED_ON = sql_source).

3. In this section of the syntax file, specify the variations of SQL
syntax specific to the database. For a description of the available
variations, see page 10.

4. In the Data Access Setup wizard, in the Advanced Database
Properties screen, specify a Syntax name. The Syntax name
identifies the SQL flavor in the Attunity Connect syntax file.

Example

The following code specifies an SQL flavor called OLESQL_SPECIAL.
The SQL implementation has the following characteristics:

[OLESQL_SPECIAL]
BASED_ON = OLESQL /* my flavor is similar to that of
OLESQL, but … */
 (----- specify variations here

The SQL implementation of this database has the following
characteristics:
! It is based on the OLESQL flavor provided with Attunity

Connect.

 Handling Different Flavors of SQL 19
! It calls the substring function SUBSTRING (rather than the
default SUBSTR).

! It does not implement the substring function with 2 operands,
but since it does implement the LENGTH function there is
workaround for this limitation.

[OLESQL_SPECIAL]
BASED_ON = OLESQL
/* SUBSTRING with three operands */
SUBSTR = SUBSTRING(~, ~, ~)
/* SUBSTRING with two operands */
SUBSTR=SUBSTRING('0,'1, LENGTH('0)-'1+1)

Default SQL Flavors Supplied by Attunity Connect

Attunity Connect SQL The Attunity Connect default SQL is based on ANSI '92 SQL with the
following definitions:

ABS = ABS(~)
ASFORM = “AS”
CONCAT = ~ || ~
LIMIT_ROWS_SYNTAX = NOT_SUPP
GROUP_BY_COLUMN = yes
ORDER_EXPR_BY_NUM = yes
IDENTIFIER_QUOTE_CHAR =
IFNULL = IFNULL(~, ~)
JOINCONNECTOR = “,”
JOINSURROUNDCHARS = “”
LENGTH = LENGTH(~)
LIKE = ~ LIKE ~
LIKE = ~ LIKE ~ ESCAPE ~
LOWER = LOWER(~)
MOD = ~ MOD ~
PLACEHOLDERS = “?”
POSITION = POSITION(~ IN ~)
SQRT = SQRT(~)
STRINGQUOTATION = ‘
SUBSTR = SUBSTR(~, ~)
SUBSTR = SUBSTR(~, ~, ~)
UPPER = UPPER(~)

The values of the other parameters, described in "Supported
Functionality" on page 11, is n (no).

Refer to the nav.syn file in the DEF directory, under the directory
where Attunity Connect is installed for the syntaxes provided with
Attunity Connect.

20 Using the Attunity Connect Syntax File
Specifying a Flavor of SQL in an Application Connect String
Instead of specifying a flavor of SQL in the syntax file, you can specify
it directly in the connect string of your (ADO, ODBC, or JDBC)
application. You define the flavor by specifying the Syntax parameter
in the application connect string, as follows:

Syntax=(syn-name[,"prop=value"[,"prop=value"]...])

where:

syn-name – A name that identifies a particular SQL flavor. If a
syn-name is used which is greater than 15 characters, only the first
15 characters are used.

prop – Syntax properties. For details see "Specifying Variations in
the Syntax File" on page 10.
" Use a pair of double quotes (") when the specific flavor requires double

quotes ("). For example, a null string in an expression ("") is specified as
("""").

Example

Assume a driver with the following characteristics:
! The driver implements the substring function with three

operands, but calls it SUBSTRING (instead of the default
SUBSTR).

! The driver does not implement the substring function with two
operands. However it does implement the LENGTH function
which you use to enable a substring function to operate with
only two operands.

The Syntax entry in the connect string can be specified as follows:

Syntax=(MY-SYNTAX,"SUBSTR=SUBSTRING(~, ~, ~)",
"SUBSTR=SUBSTRING('0,'1, LENGTH('0)-'1+1)")

In addition, a binding entry must be specified. You can do this in
one of the following ways:
! By specifying the Binding parameter in the connect string, as in

the following example:

Binding=(MYDB,ODBC,MYDSN,TDP_SYNTAX_NAME=MY-SYNTAX)

To specify more than one syntax section, repeat this parameter.
" TDP_SYNTAX_NAME is an Attunity Connect name for the syntaxName

parameter in the binding file.
! By specifying the syntax name in the Advanced Database

Properties screen of the Data Access Setup wizard or directly in
the binding file. See "Defining a Flavor of SQL" on page 9 for
details.

 Handling Different Flavors of SQL 21
For complete information about specifying this and other parameters in
the application connect string, see Attunity Connect Data Adapter
Guide and Reference.

22 Using the Attunity Connect Syntax File

Index
A
ABS function

in syntax file 14
AGG_DIST_NOT_SUPPORT syntax file func-

tion 11
ASCII function

in syntax file 14

C
CASE function

in syntax file 14
CASE_SENSITIVE syntax file function 11
CEIL function

in syntax file 14
CHR function

in syntax file 14
CONCAT (||) function

in syntax file 14
concatenation

in syntax file 14
connect string

syntax parameter 20
CONVERT function

in syntax file 14

E
Excel

syntax 6
EXP function

in syntax file 14
EXPR_IN_ORDERBY syntax file function 11

F
FLOOR function

in syntax file 14

G
GROUP_ANY_EXPR syntax file function 12
GROUP_BY_ALIAS syntax file function 12
GROUP_BY_COLUMN syntax file function 12
GROUP_EXPR_BY_NUM syntax file function

12
GROUP_SHOULD_AGG syntax file function 12

I
IFNULL function

in syntax file 14
IN function

in syntax file 14

J
JOLT

syntax 6

L
LENGTH function

in syntax file 14
LIKE function

in syntax file 14
LOG function

in syntax file 14
LOWER function

in syntax file 14
LPAD function

in syntax file 14
LTRIM function

in syntax file 14

M
MOD function

in syntax file 14

N
NAV.SYN

ABS function 14
AGG_DIST_NOT_SUPPORT 11
ASCII function 14
CASE function 14
CASE_SENSITIVE 11
CEIL function 14
CHR function 14
CONCAT (||) function 14

24 Using the Attunity Connect Syntax File
CONVERT function 14
errors 9
Excel 6
EXP function 14
EXPR_IN_ORDERBY 11
FLOOR function 14
function variations 14
GROUP_ANY_EXPR 12
GROUP_BY_ALIAS 12
GROUP_BY_COLUMN 12
GROUP_EXPR_BY_NUM 12
GROUP_SHOULD_AGG 12
IFNULL function 14
IN function 14
JOLT 6
LENGTH function 14
LIKE function 14
LOG function 14
LOWER function 14
LPAD function 14
LTRIM function 14
MOD function 14
NO_COLUMN_ALIAS 12
NO_DISTINCT_HAVING 12
NO_EXPRESSIONS_IN_INSERT 12
NO_GRANT 12
NO_MULTI_THREADING 12
NO_OWNER 12
NO_PARAMETERS_IN_SUBQUERY 12,

13
NO_TWO_PARAMS_IN_COMPARE 13
NO_TWO_PARAMS_IN_MATH 13
ONE_COLUMN_SUBQUERY 13
ORDER_BY_COLUMN 13
ORDER_EXPR_BY_NUM 13
ORDER_NO_CALC 13
PARAM_AND_EXPR_IS_PARAM 13
PI function 14
POSITION function 14
POWER function 14
Rdb 6
ROUND function 14
RPAD function 14
RTRIM function 14
SIGN function 14
single quotes 10
specifying variations 10

SQL/MX 6
SQRT 14
SUBSTR function 14
supported functionality 11
trigonometry functions 14
TRUNC function 14

NO_COLUMN_ALIAS syntax file function 12
NO_DISTINCT_HAVING syntax file function 12
NO_EXPRESSIONS_IN_INSERT syntax file

function 12
NO_GRANT syntax file function 12
NO_MULTI_THREADING syntax file function

12
NO_OWNER syntax file function 12
NO_PARAMETERS_IN_SUBQUERY syntax

file function 12, 13
NO_TWO_PARAMS_IN_COMPARE syntax file

function 13
NO_TWO_PARAMS_IN_MATH syntax file func-

tion 13

O
ONE_COLUMN_SUBQUERY syntax file func-

tion 13
ORDER_BY_COLUMN syntax file function 13
ORDER_EXPR_BY_NUM syntax file function

13
ORDER_NO_CALC syntax file function 13

P
PARAM_AND_EXPR_IS_PARAM syntax file

function 13
PI function

in syntax file 14
POSITION function

in syntax file 14
POWER function

in syntax file 14

R
Rdb

version 5 syntax 6
ROUND function

in syntax file 14
RPAD function

in syntax file 14

Index 25
RTRIM function
in syntax file 14

S
SIGN function

in syntax file 14
single quotes

syntax file 10
SQL

adapting nonstandard 9, 18
Attunity Connect 19
functions 14
supported functionality 11
variations 10

SQL functions
in syntax file 14

SQL statement variations
syntax file 10

SQL/MX
syntax 6

SQRT function
in syntax file 14

SUBSTR function
in syntax file 14

syntax file
ABS function 14
AGG_DIST_NOT_SUPPORT 11
ASCII function 14
CASE function 14
CASE_SENSITIVE 11
CEIL function 14
CHR function 14
CONCAT (||) function 14
CONVERT function 14
errors 9
Excel 6
EXP function 14
EXPR_IN_ORDERBY 11
FLOOR function 14
function variations 14
GROUP_ANY_EXPR 12
GROUP_BY_ALIAS 12
GROUP_BY_COLUMN 12
GROUP_EXPR_BY_NUM 12
GROUP_SHOULD_AGG 12
IFNULL function 14
IN function 14

JOLT 6
LENGTH function 14
LIKE function 14
LOG function 14
LOWER function 14
LPAD function 14
LTRIM function 14
MOD function 14
NO_COLUMN_ALIAS 12
NO_DISTINCT_HAVING 12
NO_EXPRESSIONS_IN_INSERT 12
NO_GRANT 12
NO_MULTI_THREADING 12
NO_OWNER 12
NO_PARAMETERS_IN_SUBQUERY 12,

13
NO_TWO_PARAMS_IN_COMPARE 13
NO_TWO_PARAMS_IN_MATH 13
ONE_COLUMN_SUBQUERY 13
ORDER_BY_COLUMN 13
ORDER_EXPR_BY_NUM 13
ORDER_NO_CALC 13
PARAM_AND_EXPR_IS_PARAM 13
PI function 14
POSITION function 14
POWER function 14
Rdb 6
ROUND function 14
RPAD function 14
RTRIM function 14
settings in connect string 20
SIGN function 14
single quotes 10
specifying variations 10
SQL/MX 6
SQRT 14
SUBSTR function 14
supported functionality 11
trigonometry functions 14
TRUNC function 14

syntax parameter 20

T
trigonometry functions

in syntax file 14
TRUNC function

in syntax file 14

26 Using the Attunity Connect Syntax File
V
variations in SQL functionality

in syntax file 11

	Handling Different Flavors of SQL
	The Syntax File
	Syntax File Format for a New Flavor of SQL
	Syntax File Format for a Modified Flavor of SQL
	Ordering Sections in the Syntax File
	Errors in the Syntax File

	Defining a Flavor of SQL
	Specifying Variations in the Syntax File
	Using Single Quotes in the Syntax File
	Variations in SQL Statements
	Supported Functionality
	Variations in SQL Functions
	Operands Supported by a Function
	Date and Time Constants
	Example Syntax File Definitions

	Default SQL Flavors Supplied by Attunity Connect
	Attunity Connect SQL

	Specifying a Flavor of SQL in an Application Connect String

